Categories
STEM Education Poetry

Noting It Well

“Keeping a notebook:
Lab bibliotherapy;
Data, procedure in
Tome here are stored.
Calcs and reagents and
Instrumentation: 
The table of contents, 
Their order records.”

The 2 November 2020 Twitter poem described one of the most ubiquitous tasks that a chemistry student or chemist completes: keeping a lab notebook.  

“Keeping a notebook: /
Lab bibliotherapy; /
Data, procedure in /
Tome here are stored…”

In the interdisciplinary seminar I’ve described previously, we discuss types of disciplinary documentation.  We read Joan Didion’s “On Keeping a Notebook” and examine similarities and differences between her observational record and the lab notebooks that many of the science students are assigned.    

One observation that arises quickly is the audience of a writer’s notebook versus a chemist’s notebook.  Didion writes daily observations in contemplating her own life: “[T]he point of my keeping a notebook has never been, nor is it now, to have an accurate factual record of what I have been doing or thinking…  Remember what it was to be me: that is always the point.”  

In contrast, students are often familiar with my general exhortation: “Make sure your notebook is detailed enough that another chemist could pick it up and repeat your experiment!”  STEM lab notebooks follow systematic formats; “data [and] procedure” must be carefully recorded, using notation that other scientists understand.  

“Calcs and reagents and /
Instrumentation: /
The table of contents, /
Their order records.”

Other required notebook elements include materials (reagents) used in an experiment, sample calculations, and specific instrumental details; as an academic term proceeds, a running table of contents is updated.

The image on this website’s homepage is a photograph of pages from my great-grandfather’s now-century-old lab notebook.  (Someday soon, that notebook deserves an essay of its own; the phrase “keeping a notebook,” of course, has multiple resonances.)  Noting the theme of this poem, specifically, I demonstrate how consistent these main goals have been for students and scientists across the years, using the historical document as a reference in the course. 

Categories
STEM Education Poetry

Precipitation Events

“Cations, anions:
Test in the lab if
Their aqueous combo
Yields chemical ‘storm.’
(Charts can be voluble,
Re: rules insoluble.
Key to observe:
Does precipitate form?)”

The 26 October 2020 Twitter poem provided an overview of qualitative analysis, a classic chemistry lab experiment that builds on the concept of the precipitation reaction.  It employs the pseudo-double-dactyl form increasingly commonly found in this space.    

“Cations, anions: /
Test in the lab if /
Their aqueous combo /
Yields chemical ‘storm.’”

Ionic compounds consist of positively charged ions (cations) bonded to negatively charged ions (anions) through electrostatic forces: the attraction between opposite charges.  The resulting compounds are classified as water-soluble or water-insoluble, depending on whether they dissolve in water.  While water is polar and excellent at dissolving many ionic compounds (since its own partial charges can repel and attract the charges present in the ionic compounds), certain cations and anions are attracted so strongly to one another that the compounds they form do not dissolve in water.      

In a typical lab experiment, students are given a series of “unknown solutions” (unidentified ionic compounds dissolved in water) and discern which elements are present in the unknowns, by combining the unknown solutions with known reagents.  

Two water-soluble compounds [denoted by (aq), for “aqueous”] exchange their ions.  If either “post-exchange” compound is then water-insoluble [denoted by (s), for “solid”], it forms a precipitate, as shown here [AD (s)]:       

AB (aq) + CD (aq) → AD (s) + CB (aq)

The solid’s crashing out of solution is designated poetically as a “chemical storm,” describing the observed behavior via another precipitation definition.    

“(Charts can be voluble, /
Re: rules insoluble. /
Key to observe: /
Does precipitate form?)”

Charts of solubility rules provide students with guidelines for which combinations of cations and anions form precipitates.  Using these lengthy (“voluble”) sets of rules, along with their lab data, students predict what ions must have been present in the unknown solutions.      

These experiments are termed “qualitative analysis” because they involve analysis by way of qualitative (non-quantitative/non-calculation-based) observations of the reaction: most simply, does a solid precipitate form or not?    

Categories
Science Poetry

Annual Appreciation

“Practical, rational
Findings: week celebrates,
Spotlighting chem work of 
National fame…
Lab-analyzingly,
Goal-synthesizingly: 
Highlight stick-to-it-ive 
Process and aims!”

The 19 October 2020 Twitter poem marked the start of National Chemistry Week 2020.

“Practical, rational /
Findings: week celebrates, /
Spotlighting chem work of /
National fame…”

The first four lines noted the general themes of National Chemistry Week, which celebrates chemistry research across the USA.  The American Chemical Society sponsors related events and campaigns, throughout late October.  Each year involves a different theme highlighting a different aspect of the discipline of chemistry.    

Lab-analyzingly, /
Goal-synthesizingly: /
Highlight stick-to-it-ive /
Process and aims!”

The second four lines of this poem were focused on the 2020 theme for National Chemistry Week, “Sticking with Chemistry,” examining the science behind adhesives.  

Two hyphenated double-dactyl words, “lab-analyzingly” and “goal-synthesizingly,” summarized some of the main ways in which chemists complete their work.  Several types of analysis can be completed on compounds to understand their elemental composition and overall properties.  New chemical species can be synthesized in the lab, putting elements into new combinations. 

The “stick-to-it-ive” phrasing emphasized both adhesives as the subject of the 2020 celebration, specifically, and the determination with which scientists approach their goals, generally!  

This year’s week began on Monday and, for 2021, celebrates a theme related to ideas of chemical kinetics and reaction rates: “Fast or Slow, Chemistry Makes it Go.”  A new round of Twitter poems is thus in progress… which I’ll return to next year, in this space. 

Categories
STEM Education Poetry

Midterm Moments

Halfway through pathway to
End of semester, in
Midst of October as 
Projects abound.
Hectic, eclectic:
Exams will accumulate;
Heed well the schedule;
Assignments compound!

This Twitter poem was posted on 12 October 2020, and the timing lines up well with the current academic calendar. It is not particularly mysterious in its chemistry content, compared to some of the last few!  

“Halfway through pathway to /
End of semester, in /
Midst of October as /
Projects abound…”
Our autumn semester starts in late August and ends in early December. Thus, depending on the course in question, a midterm exam or project in mid-October tends to mark the halfway point.  

This poem found its inspiration in the “halfway… pathway” sounds, along with the timing of the calendar.  The two similar words suggested the double dactyl rhythm.  

“Hectic, eclectic:
Exams will accumulate;
Heed well the schedule;
Assignments compound!”
Part of the challenge of an academic semester is the wide variety of assignments and assessments that add up over the course of a student’s overall schedule. Often, multiple exams or due dates land on the same day, and so it’s necessary to “[h]eed well the schedule“ to ensure time to prepare for everything, as needed. 

The last line, with the pun on the word “compound,” is the main link to chemistry content in this particular poem; the sense of accumulating exam stress is likely familiar to students in any academic field! 

Categories
STEM Education Poetry

Alkane Knowledge

“Naming a molecule:
Precise endeavor that
Draws on organic skills
Nuanced and vast.
Start with the carbon chains;
Look for the longest (and
So on, and so on, with
Concepts from class).”

The 5 October 2020 Twitter poem addressed a common objective from introductory and organic chemistry coursework: learning how to name a molecule.  

“Naming a molecule: /
Precise endeavor that /
Draws on organic skills /
Nuanced and vast.”
A few of these posts have already addressed some of the intricacies of chemical nomenclature.  Chemists have developed systematic rules for naming compounds: an early consideration is whether a compound is inorganic or organic, as each classification requires its own precise set of rules.  These rules are managed by the International Union of Pure and Applied Chemistry, or IUPAC.  Organic compounds are often interchangeably called molecules.  To name a molecule thus requires “organic skills [that are] nuanced and vast.”

“Start with the carbon chains; /
Look for the longest (and /
So on, and so on, with /
Concepts from class).”
In an acyclic hydrocarbon molecule, the first rule of naming is to identify the longest carbon chain.  This will inherently give the root word of the name; for instance, a saturated hydrocarbon chain containing six carbons all bonded to one another in a line is called hexane.  

The dismissive “and so on, and so on” mention in the poem omits much follow-up information.  The rules of naming then involve considering what side chains are bonded to that longest chain, whether any functional groups are involved, whether any double or triple bonds are present, and many other considerations.   It requires much practice to use nomenclature “concepts from class” in any efficient way.  

The title here confines our analysis to the very simplest cases: hydrocarbon compounds where each carbon atom is saturated, or bonded to four other atoms; such compounds are called alkanes.  Moreover, the title allows a play on words with “arcane knowledge,” a description that can certainly seem apt for nomenclature! 

Categories
STEM Education Poetry

Cataloging Contents

“Beakers and 
Test tubes and
Funnels and 
Stir rods;
Pipettes and
Condensers and
Glassware galore.
Tongs;
Bunsen burner; 
A mortar and pestle;
Thermometer; 
Scoopula—
All in lab drawer.”

The 28 September 2020 Twitter poem used dactylic feet to catalog some of the many pieces of lab equipment used in introductory chemistry.  

“Beakers and /
Test tubes and /
Funnels and /
Stir rods; /
Pipettes and /
Condensers and /
Glassware galore.”
The first week of a lab course is typically devoted to “check-in”: ensuring that each lab student has a complete set of equipment in their lab drawer with which to complete the tasks of the upcoming academic term.  This can be an overwhelming process, as students are introduced to a wide variety of items and names!  

The tools used in lab are typically used to measure volumes of liquid reagents (as with a pipette), prepare reactant mixtures (beakers, funnels, stir rods), and observe the behavior of small samples (test tubes).  More complex syntheses or purification techniques often rely on condensers and other pieces of “glassware galore.”

“Tongs; /
Bunsen burner; /
A mortar and pestle; /
Thermometer; /
Scoopula— /
All in lab drawer.”
The wide variety of items cited here in the last few lines highlight even more of the variety of goals in a lab class.  

Some of these items are related to heating and working with heated reaction mixtures (Bunsen burners and tongs, respectively, used most typically with glassware); or monitoring heat energy flow in a chemical reaction, by monitoring temperature via a thermometer.  Others are used to prepare solid reactants for use in a reaction: a scoopula can be used to obtain materials from a reagent bottle, while a mortar and pestle can be used to grind up the solid material as finely as possible.  

Several online resources include some fantastic graphics and summaries related to these materials that I often have referenced in the first week of a lab course, as students work to ensure that “all [is] in lab drawer,” preparing for the upcoming semester. 

Categories
STEM Education Poetry

Balancing Acts

“Balanced reactions are
Equiproportional
Statements describing a 
Chemical tale;
Relevant math skills are
Termed stoichiometry.
Learn these techniques: 
On assessments, prevail!”

The 21 September 2020 poem was a pseudo-double-dactyl summarizing some common themes from introductory chemistry courses.  

“Balanced reactions are /
Equiproportional /
Statements describing a /
Chemical tale…”
As described elsewhere on this site, a balanced reaction (one in which the number of each type of element is consistent across the reaction arrow) communicates a great deal of useful information about the chemical process in question.  

Such reactions explain the relative number of moles of each chemical species; they are “equiproportional.”  To chemists, balanced reactions can be read as sentences communicating information about how reactants yield products, or, more poetically, “statements describing a chemical tale.”  

“Relevant math skills are /
Termed stoichiometry. /
Learn these techniques: / 
On assessments, prevail!”
The use of balanced reactions for quantitative applications is called stoichiometry.  Using a balanced reaction, a chemist can predict information about the mass or moles of a reactant or product of interest, given data about a different chemical species involved in the same reaction.  

As with some other poems posted here, this one is written in a teacher’s voice. The second half of the double dactyl exhorts students to learn the skills of balancing reactions and using them for stoichiometric calculations, so that they can succeed on assessments such as homework and exams! The first year of chemistry coursework provides an introduction to a range of such techniques. 

Categories
STEM Education Poetry

Table Setting

“Chem classrooms: distanced,
Throughout fall semester.
The desks and the lectern,
Remote; these are missed. 
Note, though, some ‘furniture’
Still omnipresent: the
Chart periodic— key 
Table— persists.”

The 14 September 2020 Twitter poem is one that immediately places itself somewhere in the 2020-21 span, discussing more of the unusual circumstances of the academic year than any chemical principle of interest.  

“Chem classrooms: distanced, /
Throughout fall semester. /
The desks and the lectern, /
Remote; these are missed.”
My introductory chemistry courses had high enrollments in Fall 2020, so the class format I chose involved required, online lectures supplemented by optional, in-person discussion sessions that could allow for easier social distancing.   It was challenging to know how to approach the autumn term, and no modality was obviously perfect.  However, I aimed for a blend of communicating information thoroughly and flexibly, while still including chances for in-person discussions and clarifications with students interested in those opportunities.  

That meant, though, that the traditional classroom furniture items (“the desks and the lectern”) weren’t used regularly in the same way, and so “remote, these [were] missed.”  

“Note, though, some ‘furniture’/
Still omnipresent: the /
Chart periodic— key /
Table— persists.” 
The last four lines of this poem point out that any chemistry classroom, in any modality, will contain a piece of furniture, albeit a metaphorical one.  This is highlighted by the description of the “chart periodic— key table”: an allusion to the Periodic Table of Elements.  

This is one of several poems written last autumn where the use of the double-dactyl rhythm falls short compared to the true structure of a double dactyl.  That failing is particularly pronounced in this poem; the structure still looks quite awkward to me.  However, this rhythmic form was a fun change from the limericks of 2019; further, it was intriguing how different types of poem ideas came to mind through this academic autumn than in the last one, with the sounds of the dactylic feet more pronounced than the anapestic feet of the limerick

Categories
STEM Education Poetry

Word Choice

“Chemistry’s challenges:
Nomenclatorial;
Configurational;
Math-centric, too;
Terminological;
Diagrammatical.
Disciplinarily,
Order accrues.”

The 7 September 2020 poem was another “macroscopic” one, looking at some of the big-picture properties of chemistry as a discipline.  It sums up many of the challenges seen in introductory chemistry courses.

“Chemistry’s challenges: /
Nomenclatorial; /
Configurational; /
Math-centric, too; /
Terminological; /
Diagrammatical.”
As I’ve alluded to in a few of the recent posts, many of the double-dactyl poems were inspired by identifying a specific “double-dactyl” word itself: one that has six syllables.  That trend reaches its zenith in this poem, with five of the eight total lines in the poem using such words! 

Four lines allude to specific challenges in learning chemistry via double-dactyl descriptors.  “Nomenclatorial” encompasses the complex naming schemes found throughout the branches of chemistry. “Configurational” refers to the necessity of learning to see molecules in three dimensions and consider their shapes (configurations). “Terminological” summarizes the immense challenge of approaching any complex disciplinary vocabulary, with all its specific terms and definitions. “Diagrammatical” addresses the practice of learning to read and use informative diagrams/depictions interchangeably with words and equations (e.g., a chemical mechanism or a potential energy surface).  

The “math-centric” designation does not involve a double-dactyl word but is another major part of learning chemistry: learning to efficiently use and interpret a wide variety of calculations, graphs, and formulas.

“Disciplinarily, /
Order accrues.”
The last two lines involve one more double-dactyl word, with “disciplinarily,” and then a play on words: contrasting the familiar phrase “chaos ensues” with one of the biggest goals of disciplinary communication and conventions: “Order accrues.”  Taking an introductory course in any subject involves an introduction to the lens via which that discipline organizes and interprets information about the world. 

Categories
Science Poetry

Process Poem

“Start by observing, then
Ask informed question and
State a hypothesis;
Then test away,
Experimentally.
Findings might verify
(Or ‘back to drawing board’
Also might say…).”

I’ll return here in the autumn semester to the routine of weekly posts in which I provide additional context (“translations”) for the poems I’ve posted on Twitter in previous months. The 31 August 2020 poem summarized the scientific method in double dactylic rhythm.   

“Start by observing, then /
Ask informed question and /
State a hypothesis; /
Then test away, /
Experimentally…”

The specific details of the scientific method are listed in different ways by different sources, but major commonalities persist.  The method is driven by observations, which lead to posing a question with a tentative explanatory answer called a hypothesis.  That hypothesis can predict findings; those predictions can be tested via experiments.  (The presence of “experimentally” on a list of double-dactyl-friendly, six-syllable words prompted this particular poetic endeavor.)  

“Findings might verify /
(Or ‘back to drawing board’ /
Also might say…).”

The final few lines emphasize another aspect of the scientific method: its iterative nature.  Experiments can provide evidence (data, results, conclusions) in support of a hypothesis’s predictions (“findings might verify”), or they can provide evidence that does not support those predictions. In the latter case, a scientist would refine the hypothesis, design a new experiment, and try again: “back to [the] drawing board.”  

As a sidenote, another vocabulary term often introduced alongside the scientific method is “theory.”  A scientific theory is a explanation that has withstood many instances of rigorous testing from the scientific community; the scientific definition of “theory” is different than the everyday definition.  (One valuable metaphor I’ve heard used is that of a map: a theory connects complex information in our understanding of a particular subject into an organized format. The merit of the theory can be evaluated on the basis of the “geographical information” it provides.)

The resources linked herein provide much more detailed and informative discussions of the nature and history of the scientific method!  However, this does seem a fitting topic for the first poem “translation” of this new semester.