Science Poetry

Trending News

The elements: perpetually trending!  
Their table: conceptually tending
Some ranks qualitative
Regarding key data
Of species, location-depending.”    

The 12 February 2020 limerick belatedly highlighted National Periodic Table Day, which I had not realized existed until its celebration on February 7… at which point I saw many pertinent Twitter hashtags!   

“The elements: perpetually trending!”  
The first line acknowledges the play on words with “trending” in a social media context and in a chemistry context.    

“Their table: conceptually tending /
Some ranks qualitative /
Regarding key data /
Of species, location-depending.”   
Information about elements’ behaviors can be understood from a reading of the periodic table of the elements (PTE), as described in lines two through five.  

This is a poem in which the rhyme aligns fairly closely with the prose explanation.  The periodic table organizes (“conceptually tends”) a wealth of general chemical and physical data about the elements (their “ranks qualitative”).  In other words, once someone learns to read the PTE, they can use the placement of elements relative to one another to predict trends in these properties (“key data… location-depending”). 

For instance, atomic radius (which essentially corresponds to atomic size) decreases left to right across a row of the PTE and increases down a column of the PTE.  Thus, from looking at a periodic table, we know without having to research specific numbers that rubidium (Rb) would have a greater atomic radius than the element in the same column in the row directly above it: potassium (K).  Correspondingly, potassium would have a greater atomic radius than its neighbor directly to the right: calcium (Ca).  If we look these specific data up, we can confirm the trend: the respective atomic radii of Rb, K, and Ca are 235 picometers (pm), 220 pm, and 180 pm.  

Countless other relationships can be described, for a variety of physical and chemical elemental behaviors.  The PTE is an enormously useful reference tool, for scientists and science students around the world.         

Science Poetry

Counting Calories (or Joules)

Procedures in bomb calorimetry
Take place in a setting of constant V.  
From the temperature change
In solution, arrange
Calculations for internal energy.

The 27 January 2020 limerick describes the main mathematical aims of a chemistry lab technique called bomb calorimetry. The language is, unsurprisingly, less precise than I’d teach in class, but the poem provides an overview of the experiment!  

“Procedures in bomb calorimetry /
Take place in a setting of constant V.”  
Calorimetry experiments measure the transfer of heat energy; different types of calorimetry involve different types of experimental settings and instruments.  Constant-pressure calorimetry was generally described in a previous entry: if a lab vessel is open to the air, the pertinent chemical reaction occurs at constant (atmospheric) pressure; coffee-cup calorimetry is one common example.  

By contrast, this poem highlights constant-volume (“constant V”) calorimetry, or bomb calorimetry, in which a reaction occurs in a sealed metal container. A chemical sample is placed in this container (the “bomb”), which is then filled with oxygen; ignition of the sample via operation of the calorimeter causes a combustion reaction to occur.  

“From the temperature change /
In solution, arrange /
Calculations for internal energy.” 
The ending lines sum up many calorimetry calculations: information about a reaction is inferred from a measurement of the temperature change in the surrounding water. 

In constant-volume calorimetry, the oxygen bomb is placed in a water bath in the larger calorimeter.  The “in solution” phrase is linked to constant-pressure calorimetry more directly, but the theme of measuring the temperature change in the water is consistent.  For an exothermic reaction, for instance, the temperature of the surrounding water will rise, because the reaction (the system) releases heat energy to its surroundings.  

Depending on the experimental constraints, calculations involving this heat energy transfer then give information about the enthalpy change of the process (𝛥H, or “Delta H,” in constant-pressure calorimetry) or the internal energy change of the process (𝛥U, or “Delta U,” in constant-volume calorimetry, as described here).  Such quantities are typically reported in calories (cal) or joules (J); hence this piece’s title. 

Science Poetry


“Return to pursuits epistemic
In classrooms and lab spaces chemic;
The weather is wintry 
For ‘spring’ term re-entry:
Act 2 of the year academic.  

This blog entry, written at the start of Spring 2021, corresponds to the Twitter limerick posted on 13 January 2020, as last year’s spring term began.  Revisiting it in this space provides an opportunity to set out some general goals for the new year and the new semester, just before spring classes begin.  

“Return to pursuits epistemic / 
In classrooms and lab spaces chemic…”
The vocabulary is lofty in both lines one and two: a “pursuit epistemic” is an endeavor related to learning; a “lab space chemic” is a chemistry laboratory.  Mid-January brings a return to focused spaces such as classrooms and labs, with the start of a new term, after the semester break.  

“The weather is wintry /
For ‘spring’ term re-entry…”          
It is harder to find the motivation to begin a “spring” semester in the height of winter than to begin the “autumn” semester in late summer.  Lines three and four acknowledge this difficulty!  

“Act 2 of the year academic.”
The essay’s title takes its inspiration from this last line of the limerick.  Moreover, while I cannot exactly remember my thought process from last January, I suspect that the rhymes from lines one and two arose from an end goal of “academic,” so that the last line gave the original poem its shape, as well.  

An academic year lends itself well to (my admittedly simplistic understanding of) a two-act dramatic structure: a story told in two parts, separated by a break.  While a music-less entr’acte is a contradiction in terms, writing this poem parallels some of the role of playing or hearing such a composition: providing some time to recenter and readjust to the setting.

Certainly, the second act mentioned here– Spring 2020– brought with it quite a plot twist, which many of these Spring 2021 essays will revisit.  My Twitter posts provided more immediate reactions than did this site’s entries during the same time period, and it will be interesting to reconsider these poems from the perspective of nearly a year onward.     

STEM Education Poetry

Fall Finale

“The campus is in Finals Week,
And stress is thus at Finals Peak,
With projects, tests, reports at stake.
Five days to go; then, take a break!”  

The 9 December 2019 poem celebrates the end of a semester… as does this brief essay.  

“The campus is in Finals Week, /
And stress is thus at Finals Peak, /
With projects, tests, reports at stake.”  
Finals Week always provides a busy end to the semester, with exams, papers, and presentations due in a wide array of subjects.  Campus stress levels are collectively at a maximum, referred to here as “Finals Peak”!  

“Five days to go; then, take a break!”
In Fall 2019, this was posted on the Monday of Finals Week; only “five days to go” remained until the Friday of that week and thus the start of students’ winter break.  (Certainly, for faculty, grading is a remaining final hurdle before break, but it is generally simpler to accomplish that when meetings and classes are done.) 

Fall 2020 is remarkably different in many ways from Fall 2019, and so it is a particular relief to see Finals Week approach in the days ahead.  While the poem does not quantitatively represent the number of days remaining in this particular autumn, we are qualitatively near the curricular finish line, having reached the Thanksgiving break.   

I will take a cue from the 2019 poem and pause updates here for a few days, until I can reassess my writing plans during a welcome semester break.  Meanwhile, I will remember the immense patience, creativity, and fortitude that all of campus brought to the challenges of this historic year, and I know that pattern has been repeated in many other schools and colleges around the world.    

STEM Education Poetry

Under Pressure

“We’re in the home stretches of classes:
For Gen Chem, the chapter on gases.
(Last subject to finish—
Its volume’s diminished 
In pressure-increased circumstances.)”

The 2 December 2019 limerick builds on two key variables used in the specific context of gas chemistry to acknowledge a curricular constraint often seen at the end of a busy semester.  

“We’re in the home stretches of classes: /
For Gen Chem, the chapter on gases.
I’ve used a variety of textbooks in General Chemistry during my teaching career, but the break between fall semester coverage and spring semester coverage has consistently fallen between the discussion of gases and the discussion of condensed phases (solids and liquids).  Thus the “home stretch” of General Chemistry 1– the final conceptual distance covered– is “the chapter on gases.”  

“(Last subject to finish… /
Its volume’s diminished /
In pressure-increased circumstances.)”
One of the laws historically developed to describe gas chemistry was Boyle’s Law, which relates the pressure of a gaseous system to its volume; the law is named for Robert Boyle, who was a chemist and physicist who worked in the 17th century on many questions of scientific interest.  Boyle’s Law states that as the pressure of a gas increases (assuming a constant amount at constant temperature), the volume decreases; as the pressure decreases (assuming a constant amount at constant temperature), the volume increases.  The most widely used equation that expresses this relationship is p1V1 = p2V2, where p and V represent pressure and volume, respectively.  

The last few lines of this limerick extend this relationship to the reality of a rapidly ending semester: when faced with the “pressure-increased circumstances” of the approaching final exam, instructors often must curtail coverage of a last chapter, causing its volume to diminish, in terms of the time devoted to it in class!

Science Poetry

Pause for Thought

“Thanksgiving waits on the horizon:
The moods in the classes are rising.  
It’s been a long term, so
Pause study of thermo; 
Avail selves of break energizing.”

The 25 November 2019 limerick notes some themes of thermodynamics in addition to an imminent, welcome holiday weekend. 

“Thanksgiving waits on the horizon: /
The moods in the classes are rising.”  
The 2019 poem here commemorates a typical shift in a typical semester, in which a sense of accomplishment and shift towards optimism are evident as we near the Thanksgiving holiday weekend, with winter break relatively soon after. 

Fall 2020 is far from typical in terms of this term’s flow; my campus, along with many others, removed any midterm breaks or holidays, in order to finish all on-campus work by Thanksgiving.  I hope this year that, as we proceed through November, being able to see the impending holiday and the associated break “on the horizon” will still provide some mental relief to students, faculty, and staff alike, after a compressed, challenging term.  

“It’s been a long term, so /
Pause study of thermo…’ 
The chapter on thermodynamics traditionally falls near the end of the autumn semester.  Thermodynamics is often described via the shorthand “thermo”; “thermo” and “…term, so…” provided the rhyme that inspired this poem.

“Avail selves of break energizing.”
In thermodynamics, we consider a system of interest and its energetic interactions with the surroundings.  The change in energy experienced by the system depends on the heat energy transfer between the system and the surroundings and the work that is either done by the system on the surroundings or on the system by the surroundings.  (These concepts sound deceptively simple; many fascinating questions arise from the laws of thermodynamics and the related vocabulary and calculations!)  

This poem’s last line moves from the scientific context to the everyday context in terms of the word “energy,” acknowledging that the pause provided by the Thanksgiving weekend provides some welcome relief and restoration.

STEM Education Poetry

Molecular Modeling

“Calculations’ iterations
Cycle towards convergence.
Geometric, spectrometric
Data find emergence.
Supplement experiment:
These calcs will henceforth service,
Illustrate.  Once-obfuscating
Concepts thus gain purchase.” 

The 18 November 19 Twitter poem had the hashtag of “#ComputationalChemLabIntro”; it attempted to summarize the main ideas of computational chemistry for a student audience. I’m most used to doing this in a pre-lab lecture: a brief explanation in a lab setting before students try out a technique on their own. (Such lectures are necessarily quite prosaic, so this was an interesting change.)     

“Calculations’ iterations /
Cycle towards convergence.”
One typical computational chemistry calculation involves optimizing a molecule’s geometry: finding the three-dimensional arrangement of the molecular structure that will lead to the lowest energy possible.  Such an undertaking tends to be complex and lengthy.  Chemistry calculations undergo an iterative (cyclical) process until convergence is reached: until the outputs of consecutive cycles agree to a reasonable extent.       

“Geometric, spectrometric /
Data find emergence.”
Once a calculation is complete, the results can be used to explore the molecule’s optimized geometry (what are the bond lengths and angles in this now-minimum-energy molecule?) and to model its spectroscopic behavior (how does this molecule behave in the presence of different energies of light?).  Thus, the “data find emergence,” and a chemist can use these data to better understand a molecule or reaction of interest.  

“Supplement experiment: /
These calcs will henceforth service, / Illustrate…”
Computational chemistry work completed in lab can supplement findings from previous experiments, illustrating and visualizing molecular-level behaviors responsible for macroscopic observations.   

“…Once-obfuscating /
Concepts thus gain purchase.”
Moreover, being able to observe molecular geometries or spectroscopic properties often can clarify a previously-confusing (“once-obfuscating”) concept from lecture.  

This was an attempt at a Gilbert and Sullivan-esque rhyme scheme for a Twitter poem.  The title here, “Molecular Modeling,” is both a common phrase for computational chemistry work and an allusion to their famous song “I Am the Very Model of a Modern Major-General.” This musical number has seen far more famous and skillful chemistry-related uses, but I enjoyed striving for the many internal rhymes in this particular poem. 

STEM Education Poetry

Basic (and Acidic) Principles

“Reactions termed neutralizations
Involve acid-base situations.
In the intro chem locus,
Brønsted-Lowry’s the focus.
Water, salt gen’rally form at cessation.”  

The 11 November 2019 Twitter limerick focused on acid-base chemistry, a common topic in introductory chemistry coursework that can be viewed through multiple theoretical lenses.    

“Reactions termed neutralizations /
Involve acid-base situations.”
For a chemistry student, the discussion of acid-base chemistry first arrives in the chapter on aqueous reactions.  Via Arrhenius theory, an acid ionizes in water to produce hydrogen ions (H+); a base ionizes in water to produce hydroxide ions (OH).  When an Arrhenius acid and an Arrhenius base react, water (H2O) forms as one characteristic product of the reaction; water has a neutral pH.

“In the intro chem locus, /
Brønsted-Lowry’s the focus.”
Acid-base principles arise multiple times in chemistry coursework.  Different frameworks (Arrhenius acid-base theory, Brønsted-Lowry acid-base theory, and Lewis acid-base theory) are used to understand different types of reactions.  Brønsted-Lowry theory is a major focus of General Chemistry 2 (an “intro chem locus”).  While it is related to Arrhenius theory, it can account for non-aqueous reactions (those not in water) as well: acids are proton (H+) donors, and bases are proton acceptors.  Lewis theory is commonly used in Organic Chemistry.  It presents acid-base chemistry in terms of electron behavior: Lewis acids are electron-pair acceptors, and Lewis bases are electron-pair donors.        

“Water, salt gen’rally form at cessation.”
This last line revisits the first two, describing characteristic products of a neutralization reaction from the discussion of Arrhenius theory.  For example, hydrochloric acid (HCl) and sodium hydroxide (NaOH) react to form water and sodium chloride (table salt), as shown below.
HCl (aq) + NaOH (aq) → H2O (l) + NaCl (aq)

This limerick conflates two theories to serve the rhyme scheme, a point that is useful to acknowledge here with a less constrained character limit!   Lines 1, 2, and 5 allude to Arrhenius theory most directly, while Lines 3 and 4 reference Brønsted-Lowry theory. Students will encounter both views in General Chemistry.  

STEM Education Poetry

Solution Focused

“This math quantifies a dilution;  
Molarity of new solution, 
M2, can be found.
Shift equation around: 
M1 times V1; over V2.  Done!” 

This Twitter poem, originally posted 4 November 2019, discusses a common equation taught in General Chemistry, taking significant advantage of chemical shorthand to fit into the limerick structure.  One focus of an introductory chemistry course involves solution stoichiometry: the arithmetic governing reactions that take place in aqueous solution (in water).   

“This math quantifies a dilution…”
Quantifying (calculating) what happens when an aqueous solution is watered-down, or diluted, involves a key equation, the terms of which will be defined subsequently: M1V1 = M2V2.

“Molarity of new solution, /
M2, can be found.”
Chemists use “molarity” as a convenient unit of concentration: how much of a solute of interest, represented in moles, will be present in one liter of a solution

Using the equation above, we compare the molarity and volume of a stock solution– properties of a reagent we could take off the stockroom shelf, denoted here as “solution 1”– to the molarity and volume of a new solution, denoted as “solution 2.”  Specifically, we can find the molarity of the new solution, represented correctly as M2 and in the poem as M2.  (As ever, I lament my inability to have used subscripts with the original post.)     

“Shift equation around: /
M1 times V1; over V2.  Done!”  
This is a strained set of lines: algebraic explanations are not poetic.  However, this is how I’d teach the concept in class, manipulating the variables of molarity (M) and volume (V).  

Starting with the equation of interest (M1V1 = M2V2) and rearranging to solve for M2, we end up with M2 = (M1V1)/V2.  To get there, we “shift the equation around.”  The product of the molarity and volume of the original solution is in the numerator (“M1 times V1”), while the volume of the new solution (“V2”) is now in the denominator.  That completes our calculation (“Done!”).  The double meaning of “solution” is interesting to consider here, as we find the solution to an algebraic calculation that itself involves the characteristics of an aqueous solution.       

Science Poetry

Prefix Menu

“Brief verse (perhaps a ‘nano-rhyme’?) 
To wish success and writing time 
To those who on month’s novel path go:
Best of luck in NaNoWriMo!”

This Twitter poem was written for the start of National Novel Writing Month 2019 and posted on 1 November 2019.  It highlights the presence of “nano”– a metric prefix– in the common shorthand for the month: NaNoWriMo.     

“Brief verse (perhaps a ‘nano-rhyme’?)” 
The choice of prefix and the aim of the brief verse here aligned fortuitously; hence this essay’s title.  “Nano” is a metric prefix meaning 10-9, indicating that whatever measurement cited will be on the order of one-billionth.  It may be useful to first reference what’s likely a more familiar metric prefix, “centi,” via the centimeter: by definition, 10-2 meter, or one one-hundredth of a meter.  Likewise, a nanometer is one one-billionth of a meter; a nanosecond is one one-billionth of a second.   This brief, four-line poem was a tiny one and thus “perhaps a nano-rhyme.” Moreover, the “nano-rhyme” phrase alluded to the sound of “NaNoWriMo” in its entirety, which is what had initially inspired the poem.   

“To wish success and writing time /
To those who on month’s novel path go: /
Best of luck in NaNoWriMo!”
I am consistently impressed with the efforts of those who complete NaNoWriMo, writing a draft of a novel in thirty days; returning to writing has been immensely rewarding over the past few years, but my efforts are almost entirely brief by definition: couplets, limericks, double dactyls; these accompanying essays.  The task of writing a full-length book (“month’s novel path”) seems most daunting! 

That said, I fully appreciate the value of a consistent routine, and I have found that my day-to day work benefits from finding writing time during the evenings and weekends.  That’s particularly true in the midst of this chaotic, challenging year, and so I also wish the best of luck to those who’ve started this effort here in 2020.