Categories
STEM Education Poetry

Basic (and Acidic) Principles

“Reactions termed neutralizations
Involve acid-base situations.
In the intro chem locus,
Brønsted-Lowry’s the focus.
Water, salt gen’rally form at cessation.”  

The 11 November 2019 Twitter limerick focused on acid-base chemistry, a common topic in introductory chemistry coursework that can be viewed through multiple theoretical lenses.    

“Reactions termed neutralizations /
Involve acid-base situations.”
For a chemistry student, the discussion of acid-base chemistry first arrives in the chapter on aqueous reactions.  Via Arrhenius theory, an acid ionizes in water to produce hydrogen ions (H+); a base ionizes in water to produce hydroxide ions (OH).  When an Arrhenius acid and an Arrhenius base react, water (H2O) forms as one characteristic product of the reaction; water has a neutral pH.

“In the intro chem locus, /
Brønsted-Lowry’s the focus.”
Acid-base principles arise multiple times in chemistry coursework.  Different frameworks (Arrhenius acid-base theory, Brønsted-Lowry acid-base theory, and Lewis acid-base theory) are used to understand different types of reactions.  Brønsted-Lowry theory is a major focus of General Chemistry 2 (an “intro chem locus”).  While it is related to Arrhenius theory, it can account for non-aqueous reactions (those not in water) as well: acids are proton (H+) donors, and bases are proton acceptors.  Lewis theory is commonly used in Organic Chemistry.  It presents acid-base chemistry in terms of electron behavior: Lewis acids are electron-pair acceptors, and Lewis bases are electron-pair donors.        

“Water, salt gen’rally form at cessation.”
This last line revisits the first two, describing characteristic products of a neutralization reaction from the discussion of Arrhenius theory.  For example, hydrochloric acid (HCl) and sodium hydroxide (NaOH) react to form water and sodium chloride (table salt), as shown below.
HCl (aq) + NaOH (aq) → H2O (l) + NaCl (aq)

This limerick conflates two theories to serve the rhyme scheme, a point that is useful to acknowledge here with a less constrained character limit!   Lines 1, 2, and 5 allude to Arrhenius theory most directly, while Lines 3 and 4 reference Brønsted-Lowry theory. Students will encounter both views in General Chemistry.