Categories
Science Poetry

Violet Ends

Another attempt in this month of miscellaneous metrics… and this lengthier poem could likely use more of an introduction!  I’ve written on this website about the barriers that language can throw up in learning science; this is an attempt to flip that phenomenon, to use poetic structure to help illustrate a moment in the history of chemistry. 

As I have noted when I have discussed other writers’ creative STEM-adjacent essays, I would have benefited from hearing more about the history of science and philosophy of science as a student. I am intrigued by whether there might be a way to share an accessible introduction into these interdisciplinary fields (even while I am still very much learning about both of them, myself).

This poem thus tells a story from the history of chemistry– William Perkin’s serendipitous discovery of the first synthetic (lab-made) dye– and employs the verse structure to highlight what was unusual and unexpected about it, using some of the concepts from philosopher of science Thomas Kuhn’s The Structure of Scientific Revolutions and his related essay, “The Historical Structure of Scientific Discovery,” available in the essay compilation The Essential Tension: Selected Studies in Scientific Tradition and Change.  I’ll write the poem in full first, then provide some additional context in revisiting it.    

***

Young William Perkin,
At lab bench a-workin’
On cure for malaria: task of the day.
Target synthetic
For student, mimetic
Of advisor’s goal: seek to quinine, pathway.  

Mix the reagents;
Observe mixture’s changes,
As surely, voila, target compound is made.  

Trial 1: disaster!
The lab flask is plastered 
With residue, blackened; it’s notably stained.  

Trial 2 beckons,
The chem student reckons.
Wash flask out and restart; to drawing board, back.

Ethanol rinses
The flask and evinces
Its cleanliness; solvent turns from clear to PURPLE.  

This violet in flask from cleanse collected:
A new result most wholly unexpected.
A moment of STEM’s serendipity—
Could route to hue confounding be perfected?  

Now navigating untrod territ’ry,
Investigator Perkin’s chemistry,
A route to lab-made dye: a revolution
Will rise from— NOT mistake— discovery!  

Repeat attempts yield still the mauve solution.  
For industry, route proves key substitution
For natural path to valued purple dye,
All from Will’s random act of flask elution.  

The story, decades old, still verifies
Sci Method’s start: observe, with open eyes.
Alert to novel data, self apprise.
In science, plan expected; heed surprise.  

***

Thomas Kuhn has written extensively about discovery in science and how it can change the fundamental rules by which a discipline exists, via a “paradigm shift.”  I modeled the structure of this poem using these ideas: illustrating different rules (here, rhyme schemes and poem structures, supplemented by different fonts) before and after Perkin’s unexpected discovery.  Working through these stanzas, I will aim to provide context for both the chemistry story and the poetic structure.   

***

Young William Perkin, /
At lab bench a-workin’
/
On cure for malaria: task of the day.
/
Target synthetic
/
For student, mimetic
/
Of advisor’s goal: seek to quinine, pathway.  

William Henry Perkin worked in the lab of August Wilhelm von Hofmann as a student, in 1856; the two investigators were interested in finding a synthetic pathway to quinine, which held promise as a treatment for malaria.  The goal of the student echoed the goal of the advisor (“target synthetic / for student, mimetic / of advisor’s goal”).  

The double dactyl rhythms in these early stanzas are intentionally singsong in style, acclimating the reader to the “habit” of that familiar rhythm.  

***

Mix the reagents; /
Observe mixture’s changes,
/
As surely, voila, target compound is made.  

The general plan in an organic chemistry experiment involves mixing together reagents, also called reactants, to form a product.  If a reaction works perfectly (odds are quite good that it won’t!), one would see that “surely, voila, target compound is made.”  In brief, Hofmann and Perkin knew the molecular composition (how many of what type of atom) that quinine would have, and they devised a pathway by which the component atoms could presumably be put together to get there. 

The rhythm of the double dactyl persists here, emphasizing that, for the moment, things are still going according to plan.  

***

Trial 1: disaster! /
The lab flask is plastered 
/
With residue, blackened; it’s notably stained.  

Synthetic endeavors take quite a bit of trouble-shooting, and it was likely not a terrible surprise to Perkin that the first go-round resulted in the formation of an unintended product, with “blackened residue” coating the inside of the flask (the glassware in which the experiment was run).  

Likewise, the poem’s rhyme scheme continues; nothing out of the ordinary is evident, as of yet.  Synthetic experiments often require multiple attempts to perfect.      

***

Trial 2 beckons, /
The chem student reckons. /
Wash flask out and restart; to drawing board, back.

After a disastrous first run, Perkin would likely have decided to simply restart the synthesis and move on to Trial 2.  In a modern lab, a chemist might use spectroscopic techniques to see what had been made instead, but without that characterization ability, Perkin presumably decided to go back to the beginning, washing out the flask and preparing for a second attempt.

Lab work can be frustrating and requires patience, but many steps are largely predictable.  The double dactyl continues apace.  

***

Ethanol rinses /
The flask and evinces /
Its cleanliness; solvent turns from clear to PURPLE.  

Perkin used ethanol to rinse out his glassware; ethanol is a common solvent that dissolves many organic compounds and is useful in cleaning ( “evinc[ing] a flask’s cleanliness”).  In doing so, he noticed that the solvent unexpectedly turned a brilliant shade of purple, as it dissolved some of the components in the residue.  This was a major shock, and the story is often cited as one of the serendipitous moments of science.  [Rather than the three-dimensional structure of quinine, which involves both aromatic (planar; flat) and aliphatic (non-planar; non-flat) regions, Perkin had synthesized a mostly aromatic, largely planar product that would ultimately be characterized as mauveine, the purplish compound that gives mauve its color.]            

In the poetic form, the rules have gone askew!  The dactyls are no more, as of the end of the stanza’s last line; trying to fit these last syllables into dactylic feet would not work.  The poetic form here aims to highlight how disquieting Perkin’s moment of discovery must have seemed.  The expected rhyme is NOT “purple”: a clear organic solvent such as ethanol would generally take on the color of what it is cleaning, and the poem established in the previous stanza that the flask was stained black.  The unexpected rhythm is intended to emphasize what Thomas Kuhn would call a “moment of anomaly” in scientific history, in a poetic context.   

***

This violet in flask from cleanse collected: /
A new result most wholly unexpected. /
A moment of STEM’s serendipity— /
Could route to hue confounding be perfected?  

What crossed Perkin’s mind, ultimately,  was the fact that, if he could repeat the steps and determine a reliable route to a purple dye, it would be commercially valuable.  Prior to his experiment, the expensive Tyrian purple dye was obtained from a natural compound obtained from the Murex snail; generating enough dye for a viable sample required thousands of snails.   If the “route to [the] hue confounding” could “be perfected,” that synthetic pathway would be tremendously valuable to the clothing industry and others who used dyes.     

In the poem, nothing is familiar compared to the starting stanzas.  Taking a step back, though, we can see that there are still regular rhymes and rhythm… if we can take the time and recalibrate, to consider how everything fits together.   We have shifted into iambic pentameter (da-DA, da-DA, da-DA; five TIMES per LINE) and into the stanza-perpetuating form (AABA, BBCB, CCDC) of the rubaiyat!  The new metric feet will likely take a few lines for the reader to adjust to, but once that adjustment is made, the poem regains a predictable form.        

***

Now navigating untrod territ’ry, /
Investigator Perkin’s chemistry, /
A route to lab-made dye: a revolution /
Will rise from— NOT mistake— discovery!  

Repeat attempts yield still the mauve solution. / 
For industry, route proves key substitution /
For natural path to valued purple dye, /
All from Will’s random act of flask elution.  

Perkin repeated the synthesis, optimized the steps, published the results, and organic chemistry was forever changed.  It is a major step when something previously available only from a scarce natural source can now be made synthetically, in a lab.  From the discovery of mauveine arose the synthetic dye industry (“key substitution / for natural path”);  from the synthetic dye industry arose the modern chemical industry, more generally.  

The rubaiyat continues with its AABA, BBCB, CCDC pattern through a few more stanzas, each line constructed via iambic pentameter.  The reader can adjust and follow the new structure of the poem to its end.  

***

The story, decades old, still verifies /
Sci Method’s start: observe, with open eyes. /
Alert to novel data, self apprise. /
In science, plan expected; heed surprise.  

Perkin’s experiment occurred more than 150 years ago, but it still provides a wonderful and dramatic story, emphasizing the crucial role of informed observation in the scientific method and echoing Louis Pasteur’s famous quote: “In the fields of observation, chance favors only the prepared mind.”  The combination of Perkin’s formal training in organic chemistry and his skills in observation let him understand the immense importance of this moment: to both “plan expected,” devising an experiment, and “heed surprise,” realizing what had happened in that moment that the solvent turned to its vivid violet color.        

This final stanza resolves the rubaiyat, with four lines’ ending in the same rhyme, giving a poetic clue that this particular story is at its end.   

***

Overall, what I’ve attempted to do here is to contrast what Kuhn would call the puzzle-solving steps of this story (using known scientific techniques to fill in known gaps in organic chemistry knowledge; here, fitting words into the structure/rhythm of double dactylic stanzas), with its moment of anomaly (the bizarre and unexpected result that requires a re-evaluation of the surrounding scientific framework; here, the interruption of the established rhyme scheme to begin a new one).  

Interestingly, the precise moment of seeing “purple” isn’t the discovery itself.  In Kuhn’s words, “discovering a new sort of phenomenon is necessarily a complex process which involves both that something is and what it is.”  More time is needed to know what’s happening and why, both for Perkin many years ago and for the reader in the moment.  What is indisputable is that the “rules” have changed; further, adapting to that unexpected observation takes some time. Those points are what I’ve aimed to illustrate through the disjointed form of this poem.