Categories
Science Poetry

Total Synthesis

Deftly, inventively,
Percy L. Julian 
(Born on this date in 1899)
Works at his lab bench with
Techniques organic on
Corticosteroids’
Synthetic design.  

The 11 April 2020 Twitter poem celebrated the birthdate of Percy Julian, an organic chemist who made key insights into the structures and syntheses of many important compounds.  The same caveats I’ve used with respect to both structure and content in the last few entries certainly apply here as well.  While the metric feet are dactylic, this poem is not a true double dactyl, since it consists of seven lines rather than eight.  Moreover, Percy Julian’s story deserves much more attention than this brief verse.  In particular, I’ve mentioned the excellent NOVA episode “Forgotten Geniuselsewhere in this space and would echo that recommendation here.    

“Deftly, inventively, /
Percy L. Julian /
(Born on this date in 1899)”
Percy Lavon Julian (1899- 1975) was an organic chemist who developed several innovative synthetic routes, “deftly [and] inventively” identifying laboratory-based pathways to natural compounds known to be medicinally valuable.  Julian was the first Black chemist named to the National Academy of Sciences and was a civil rights advocate throughout his career.        

“Works at his lab bench with /
Techniques organic on /
Corticosteroids’ /
Synthetic design.”

In 1935, Julian worked with his research colleague Josef Pikl to synthesize physostigmine: a compound known for its value in the treatment of glaucoma. Physostigmine had been previously available only from the Calabar bean.  Given the relative scarcity of the natural source, it was not used as widely as a medication as it could have been if it were synthetically available: if it could be made in a lab.  

Since the natural compound had been isolated previously (and its structure was thus known), Julian developed the “total synthesis” of physostigmine: a complete route via which a chemist could start from materials available in the laboratory and arrive at the correct target compound.  Julian tested the properties of the compound synthesized in the lab against the known properties of the natural compound to verify that the synthesis was successful.  This was a momentous achievement; the laboratory at DePauw University at which Julian developed the synthesis was designated a National Historic Chemical Landmark.  

Physostigmine’s total synthesis was only one of many innovative pathways that Julian developed in his career.  His work increased the accessibility and affordability of several medicinally important compounds, many of which could be classed as “corticosteroids” (a term that lends itself particularly well to dactylic meter!).