Categories
STEM Education Poetry

Form and Function

“Committee work kicks off this week,
The third of fall semester.
The aim for each: a functional group!
À la the ketone, ester—
Will set structures henceforth guide us,
How in meetings we’ll react?
(This imagery is shaky,
But the rhyme scheme is intact.)”

This past Twitter poem lines up with the current prose here in an intriguing way, as this is Week 3 of the current semester, Fall 2020.  This verse compares a common organic chemistry definition– “functional group”– to the everyday meaning of such a phrase. 

While this essay doesn’t examine an aspect of chemical education directly, in the same way most of the other STEM education poems have, it centers on an aspect of a faculty member’s schedule that may not be immediately evident to students and that may be thus useful to highlight. In particular, faculty members specifically reserve office hours to ensure that they have time available for student questions outside of class: otherwise, committee meetings and other service work can quickly overwhelm the calendar.

“Committee work kicks off this week, /
The third of fall semester…”
Generally speaking (in Fall 2019, for instance), the first two weeks of a fall semester are relatively slow in terms of service: the necessary committee work with respect to guiding a university’s curriculum and other important topics.  These tasks supplement a faculty member’s teaching and research.  (These lines don’t apply as well in this unusual autumn, when many meetings have been occurring all summer.)   

“The aim for each: a functional group!”
The third line of this poem introduces what will be revealed as a chemistry pun.  Certainly, one central goal for any committee is being a group that functions well.  

“À la the ketone, ester….”
The fourth line highlights the chemistry-specific meaning of “functional group.”  In organic chemistry, a functional group is a characteristic group of atoms that defines the function of a molecule.  For instance, if a molecule contains an oxygen atom bonded to a hydrogen atom (this is a pattern abbreviated as “R-OH”), it is said to contain an alcohol functional group, and chemists thus know that this molecule will undergo some established reaction pathways.  Two other common functional groups that fit particularly well in this rhyme scheme are ketones and esters.  

“Will set structures henceforth guide us, /
How in meetings we’ll react?”
Lines five and six make the comparison between the chemistry definition and everyday definition explicit: will the structure of a campus committee inform how it functions?  

“(This imagery is shaky,
But the rhyme scheme is intact.)”
The closing lines emphasize that the two definitions don’t truly overlap: work accomplished by a committee will always be far less predictable than the reactions available to organic molecules!

Categories
Science Poetry

Metric Systems

“Can metric prefix to a poem’s foot 
Be pre-appended?
In Shakespeare’s verse, do mega-iambs
Broaden sonnets splendid? 
In brief rhymes, nano-anapests?
No, queries such are censured,
Since feet are units English:
Closing lines’ response is measured.”

The 2 September 2019 Twitter poem involved a number of variations on the same idea, which was the contrast between two “metric systems”: one used in chemistry, with the prefixes that immediately communicate important information about scale; and the other used in English, to communicate information about poetic rhythms.  

Can metric prefix to a poem’s foot /
Be pre-appended?
The first two lines introduced the idea stated above, querying whether the two types of metric systems could be combined, to use STEM’s prefixes to modify English literature’s poetic feet.  

In Shakespeare’s verse, do mega-iambs
Broaden sonnets splendid? 
In brief rhymes, nano-anapests?
The next three lines explore two examples of this potential combination, based on the scope of the prefix of interest.  “Mega” is a metric prefix meaning a factor of one million (106); it makes a number six orders of magnitude larger.  Given the grandeur and fame of Shakespeare’s sonnets, written in iambic pentameter, the “mega” scale seems potentially fitting for these iambic feet (which consist of one unstressed syllable, then one stressed syllable).  “Nano” is a metric prefix meaning a factor of one-billionth (10-9): it makes a number nine orders of magnitude smaller and so could presumably make a brief rhyme quite a bit more fleeting!  The anapest foot consists of two unstressed syllables, then one stressed syllable.  (Samuel Taylor Coleridge has summarized the rhythms of these and many others in his “Metrical Feet.”)

No, queries such are censured,
Since feet are units English:
Closing lines’ response is measured.
The last three lines ruminate on the mismatchedness of these combinations with two puns.  First, feet are defined as “units English,” which has a double meaning, given both its literature-based uses above and the measurement unit’s heritage.  [Metric prefixes can only be used with metric units (e.g., “kilometer” is a valid use, since “kilo” is a metric prefix and “meter” is part of the metric system, but “kilofoot” would not be… and indeed, looks gratingly wrong!).]  Second, the poem characterizes its response as “measured”: a phrase implying deliberate rumination but also highlighting the metrology theme of this verse.     

Categories
Science Poetry

Wake-Up Calls

“The coffee brews; its volatility
Gives rise to the day’s volubility.  
This vital transaction
Of aqueous extraction 
Relies on caffeine’s solubility!”

The 6 August 2019 limerick discussed a theme fitting for early days of an academic year: the chemistry involved in making coffee.  

“The coffee brews; its volatility /
Gives rise to the day’s volubility.”  
Like many people, I rely on coffee in the morning.  Its aroma as it steams out of a mug–  a loose but ideally reasonable take on volatility, which in a chemical context involves the evaporation of a liquid to a gas– helps me prepare for the classes ahead, which require alertness and communicativeness, both inherent in volubility.  “Volatility” and “volubility” provide here an imperfect starting rhyme; the second line is essentially a set-up for the fifth.  

“This vital transaction /
Of aqueous extraction / 
Relies on caffeine’s solubility!”
Solid chemical compounds (in this context, solutes) can be soluble to different extents in different solvents: that is, they can dissolve more easily in some solvents than others.  Often, solutes are classified as aqueous-soluble (they dissolve in water) or organic-soluble (they dissolve in organic solvents). Differences in solubility can be exploited in the laboratory to separate mixtures of compounds, using a piece of glassware called a separatory funnel.  

As this poem suggests, principles of solubility can also be useful in the kitchen!  For someone who is far from alert when the alarm goes off, a routine of drinking coffee quickly becomes a “vital transaction,” each morning.  Brewing coffee involves pouring water over coffee grounds; because the caffeine in the coffee grounds is water-soluble, especially at high temperatures, it dissolves in the water and the resulting solution drips into the coffeepot.  Thus, this is an “aqueous extraction,” since the act of making coffee is reliant on caffeine’s solubility in water.  As alluded to above, the rhyme of “volubility” and “solubility” was the inspiration for this particular limerick.    

Categories
STEM Education Poetry

Starting Lines

“Fall 2020’s path,
Synchronological:
General Chemistry,
Now underway.
Socially distancing;
Videoconf’rencing–
Patience and fortitude 
Carry the day.”

This is the shortest delay between Twitter posting and explanatory essay that I’ll likely ever have on this website; given this poem’s specific, stated relevance to Fall 2020, I will discuss it here in Week 1 of the new semester.    

“Fall 2020’s path, /
Synchronological: /
General Chemistry, /
Now underway.”
Synchronous” and “asynchronous” were not definitions I knew prior to March 2020 and the COVID-19 pandemic, but I now use these words often, as they pertain to online education and course design.  Synchronous sessions are those that meet at a specified time, while asynchronous courses are those for which materials are posted and accessible any time.  My particular autumn semester has aspects of both, but my General Chemistry classes are synchronous, meeting in the early mornings.  In this poem’s near-double-dactylic form, the most fitting adjective became “synchronological.” As of Monday, the courses are underway.     

“Socially distancing;
Videoconf’rencing…”

Some Autumn 2020 courses will involve in-person, socially distanced discussions; others will involve online lectures; others will involve some combination of the two and/or many additional possibilities.  All options have involved a significant amount of faculty preparation and flexibility over the summer months.  

“Patience and fortitude /
Carry the day.”
I’ve discussed in this space previously the concept of the zeroth law of thermodynamics: the necessity of the statement via which thermodynamic temperature is formally defined, before temperature can be used as a concept in subsequent scientific discussions.  Likewise, whatever this fall semester will bring, it is likely that its own “zeroth” requirements– the properties that must be established before any progress can be made– will reveal themselves as fortitude and patience.  Keeping these in mind, faculty, students, and staff will work together to navigate this challenging term and “carry the day”: to find success, even in these unusual circumstances.        

Categories
Science Poetry

D.C. al fine

1.
“Lunar photography’s 
Silvery filigree 
Celebrates odyssey set in the skies.
Elegant element’s
Photodevelopment:
Silver’s reduction enables moon’s rise.

2. 
Moments of alacrity,
Sagacity, tenacity—
STEM, sports, music, history—
Enveloped in philately.”  

This week’s entry expands on two Twitter poems that I wrote about my July 2019 trip to Washington, D.C., discussing two museums that I was fortunate to visit.  I’ll write both explanations in a single entry– discussing the trip from the beginning to the end, as it exists in this virtual space– so that I am justified in using “D.C. al fine” as the title.  

Lunar photography’s /
Silvery filigree /
Celebrates odyssey set in the skies.
The National Gallery of Art hosted an exhibit on lunar photography entitled “By the Light of the Silvery Moon” as part of the fiftieth anniversary of the Apollo 11 moon landing.  Many of the images were from black-and-white photography, a technique which relies on a chemical reaction involving a silver halide (AgCl, AgBr, or AgI).  “Silvery filigree” is thus a poetic way of describing such images, celebrating the sky-set “odyssey” from Earth to the moon.  

Elegant element’s /
Photodevelopment: /
Silver’s reduction enables moon’s rise.”
The latter lines of this poem directly discuss the chemistry involved with black-and-white photography.  Silver is the “elegant element” involved in the process; in the specific reaction of interest, a light-sensitive precipitate containing a positively charged silver ion is coated onto a surface.  When the surface is exposed to light, the silver ion in the precipitate is reduced to elemental silver.  

The last line celebrates the interesting contrast of mental images present in the chemical process and its artistic result.  The reduction of silver from a cation to a neutral atom is what allows the emergence of the image: here, the “moon’s rise.”      

***

Moments of alacrity, /
Sagacity, tenacity— /
STEM, sports, music, history— /
Enveloped in philately.”  
I was fortunate to live near Washington, D.C. during my postdoctoral work, and I traveled often into the city.  The National Postal Museum became one of my favorite places to visit: rarely crowded and always interesting.  It was fun to return during my 2019 vacation. 

This brief verse highlights the wide range of images on postal stamps: moments of celebration, contemplation, and dedication, across a wide range of fields.  The poem itself is quite simple: several variations on the central rhyme of “philately” (and an allusion to envelopes, for good measure).   

Categories
STEM Education Poetry

Retro Styles

Normal homework routine: questions answered.
A reframing can reset these standards,
If technique supplementary
We borrow from Jeopardy! 
Make progress by first thinking backward.  

This week’s limerick builds on the ideas noted in last week’s STEM education poem, which examined transparency in assignments, to look at the broader concept of backwards design, another long-established approach in educational practice. In particular, this poem attempts to highlight that an awareness of such pedagogical strategies could provide a possible metacognitive approach (a “technique supplementary”) for chemistry students.   

Normal homework routine: questions answered. /
A reframing can reset these standards…
The first two lines here emphasize the poem’s attempt to reconsider curricula in STEM classes, where homework often tends towards the algorithmic; this limerick will attempt to “reframe” this standard view.  

If technique supplementary /
We borrow from Jeopardy! /
Make progress by first thinking backward.  
Last week’s STEM-education-themed poem addressed transparency in learning and teaching (TILT) as a technique that instructors use to clarify the purposes of their assignments.  This week’s poem examines the related, encompassing idea of “backwards design,” where educators begin with the key learning outcomes that they want students to achieve in a course, then think backwards to intentionally design assignments and curricula that will help students reach those outcomes.  

Lines three and four aim for a familiar allusion with a rather imperfect rhyme, stating that this “supplementary” approach will echo the aims of the game show Jeopardy!  In Jeopardy!, clues are presented as “answers,” and contestants must respond in the form of questions, reversing the typical pattern stated in the poem’s first line, to progress successfully.  The concepts of TILT generally align with those of backwards design; as with Jeopardy! contestants, instructors using these approaches are thinking backward: here, to develop intentional assignments for their courses.      

While themes in both TILT and backwards design emphasize how assignments can be planned, they also present ways for students to consider their own coursework.  Can it ever be useful, in looking at a confusing assignment, to think deliberately backwards, considering what a teacher might have intended to be the process, task, and criteria? Experts in TILT have provided resources that emphasize this very approach!  Such exercises can help a student both to better understand assignments and to clarify conversations with their teachers.

This reversed thinking bears intriguing parallels to retrosynthesis, a technique from organic chemistry.  In retrosynthesis, a chemist considers the possible paths to a target molecule, thinking all the way backwards to the “starting material.”  This is often a challenging technique for students to learn in organic chemistry, and it would be similarly challenging to deconstruct a given assignment back to its goals and outcomes.  However, just as retrosynthesis is a powerful tool for chemists, the educational analog may be a useful model for students to keep in mind, in approaching a difficult course or assignment.   

Categories
Science Poetry

Case Studies

“To calculate rate arithmetic
Of reaction, cite info kinetic.  
(Common error displayed: 
Writing capital K.
For rate constant, use lower-case metric!)” 

The 24 July 2019 limerick examined a particular piece of symbolic notation that often sees some misapplication in General Chemistry.   

To calculate rate arithmetic / 
Of reaction, cite info kinetic.”  
Questions of whether a chemical reaction will occur or not involve “spontaneity,” a term with a specific meaning in chemistry.  A reaction that is spontaneous is one that occurs naturally; “spontaneous,” as a descriptor in a chemical context, is unrelated to a reaction’s speed.  (This is a case of unhelpfully mismatched chemical and everyday definitions.) 

To communicate information about the rate of the reaction, we instead use kinetic data.  The rate constant, or rate coefficient, is one piece of this data.  It is represented by a lower-case k.  The rate law of a given reaction indicates how the reaction rate depends on the rate constant and on the concentrations of species involved in the reaction.   Determining a rate law from kinetic data is a common experimental goal.     

(Common error displayed: / 
Writing capital K. /
For rate constant, use lower-case metric!)” 
In chemistry, similar or identical symbols can be used in multiple settings with multiple meanings, a phenomenon that can be confusing.  (For instance, the capital letter H, in chemistry, can represent hydrogen, or enthalpy, or the Hamiltonian operator: each with a distinct conceptual meaning.) As learners progress from novices to experts, they become adept at reading the context clues. 

In General Chemistry coursework, students are typically introduced within the span of only a few weeks to two major topics: kinetics and equilibrium.  In the former, the lower-case k represents a rate coefficient.  In the latter, a capital K represents an equilibrium constant, a different quantity.   While the two types of constants are related to one another, it is common to see them simply used interchangeably in introductory assignments: this is an error displayed.”

Categories
STEM Education Poetry

Clarifying Language

STEM assignments can tend towards asperity;
Links twixt aims and the grades can lack clarity.
Homework’s goals will be bolstered
With structures “upholstered”:
Clarify learning goals through transparency!  

This STEM-education-themed poem describes the principles behind “transparent assignment design,” which I personally first encountered in a 2019 teaching workshop (although the principles involved have certainly been established in educational practice for many years previous!). I’ve been thinking over the past few days about the challenges posed by the hidden curriculum in my own courses and how those arise particularly easily when assignment designs are “opaque.”    

STEM assignments can tend towards asperity;/
Links twixt aims and the grades can lack clarity. 
In the chemistry courses I teach, assignments like exams, homework, and lab reports are intended to highlight my visible-curriculum learning goals: conceptual understanding; problem-solving; data analysis; scientific communication.  However, within assignments, individual questions and problems can be highly algorithmic, often assessed primarily on whether a “right answer” was obtained.  Such dissonance between learning goals and graded work seems harsh and can deter a student’s learning, as I described in a previous entry.    

Homework’s goals will be bolstered /
With structures “upholstered”: /
Clarify learning goals through transparency!  
In thinking about this challenge more deliberately, I remembered an excellent presentation I heard in Spring 2019 from Suzanne Tapp, an expert on the use of “transparent design” in higher education.  She discussed how student learning from an assignment can be greatly enhanced when an instructor takes time to thoughtfully outline a given assignment, focusing on the purpose, the task, and the criteria.  (This point facilitated the rhyme of “bolstered” and “upholstered” in the third and fourth lines in the limerick: examining how embellishment of an assignment’s structure can strengthen it.)     

For instance, rather than simply tell my students “take an IR spectrum of this sample and write a lab report about your experiment,” I could outline the report’s purpose (to gain conceptual knowledge about vibrational spectroscopy; to develop skills in communicating scientific results to other scientists); the task (scaffolded instructions for each different section of the lab report); and the grading criteria (including a rubric or a sample response, to be as clear to students as possible).  This would become the substance of the assignment handout that I provided to my students.  Experts with “transparency in learning and teaching (TILT)” have highlighted how this practice can optimize learning for the entire classroom and lead to greater equity in STEM classrooms

As with many teaching workshops, the material was fascinating, and yet it’s taken me longer than I’d like to put the lessons learned into action.  I deliberately moved towards more spoken, in-class explanations about the “why” and “how” behind assignments in my classrooms in 2019-2020, but I didn’t create the text-based documents to support those questions.  Such an action is another concrete step I can take towards a more supportive classroom, as I prepare for the fall semester.  I plan to continue this discussion in next week’s post.    

Categories
Science Poetry

Trend Analysis

“Celebrate, elevate
Sesquicentennial
Chart periodic, the chemist’s best friend.  
Innovate, explicate
Lessons perennial,
Elements ordered in table-set trends.”  

The  23 July 2019 Twitter poem was another entry for C&E News’s “Periodic Poetry” contest, highlighting the periodic table and that table’s central role for chemists.  As with the 8 July 2019 poem, this verse doesn’t fully meet the stringent standards of the double dactyl form (a.k.a. the “higgledy piggledy”), but it comes close.  

“Celebrate, elevate / 
Sesquicentennial /
Chart periodic, the chemist’s best friend.” 
The first three lines highlight the celebratory nature of the International Year of the Periodic Table, the 150th (sesquicentennial) anniversary of Dmitri Mendeleev’s 1869 initial publication.  The periodic table is an indispensable tool for chemists, presenting a wealth of important data in an organized way.  (As a sidenote, “sesquicentennial” is one of a set of terms uniquely suited for the higgledy-piggledy form, given that it is a double-dactylic word; seeing it in a list of such words provided this poem’s inspiration.)    

“Innovate, explicate / 
Lessons perennial, /
Elements ordered in table-set trends.” 
Each fall, when teaching the history and use of the periodic table, I review my lecture notes, add in new details and examples, and generally attempt to “innovate, explicate [my] lessons perennial.” 

Mendeleev ordered the elements according to their chemical and physical properties, resulting in a chart that can predict relative information about a wide number of behaviors.  For instance, sodium (Na) and potassium (K) are in the same column, or family, in the periodic table.  Because potassium is underneath sodium in their column, a chemist thus can quickly make predictions about their relative atomic size (more precisely called atomic radius); the relative energy required to remove an electron from either atom (called the first ionization energy), and many other properties.  Periodic trends are “table-set”: in many cases, a chemist can use the periodic table to predict the relative magnitudes of elements’ physical and chemical properties.  

It is intriguing to contrast another common meaning of “higgledy-piggledy”– chaotic and disordered— with both the strict rules for this poetic form and the highly organized chemical chart which this poem celebrates!           

Categories
STEM Education Poetry

Active Learning

The textbook, they say, isn’t gripping. 
For the lectures, it fails at equipping
The students with motive: 
It’s far too denotive.  
So faculty, now, should be flipping.  

This is one of my favorite academic limericks that I’ve written, as it approaches the humorous, lighthearted nature inherent in that form, rather than simply borrowing the structure.  That said, I’ve never posted it on Twitter because, separate from any supporting explanations, it has always seemed more flippant than I’d like (perhaps a particularly suitable descriptor, given the subject matter!).  Given its pertinence to educational approaches and terminology, it seems a useful verse to revisit in this space, with some additional context.  

The textbook, they say, isn’t gripping. 
Academic texts– especially scientific textbooks— are tough reads, given the amount of information they cover.  They are densely written in terms of actual prose; they often present data via several media (figures, tables, graphs); they introduce numerous new vocabulary words that are immediately applied (hearkening back to Bent’s discussion of “strange terms for strange things” in chemistry nomenclature).  

For the lectures, it fails at equipping /
The students with motive: /
It’s far too denotive.  
The next three lines of the poem highlight the challenges of textbooks for chemistry students in particular.  Chemistry textbooks are highlydenotive,” using a variety of symbolic notations with precise meanings that must be understood by the reader before disciplinary concepts can be effectively communicated.  Generally, these books themselves do not spend time on the language-learning side of the discipline (although exceptions certainly exist!), instead moving directly into the concepts described by the “strange terms.”  This writing style can be disheartening to novice learners, “fail[ing] at equipping the students with motive” to read before a class session.  

So faculty, now, should be flipping.  
One response to this challenge is “flipping the classroom,” a pedagogical approach which has gained significant momentum in recent years.  Faculty create resources (videos and lecture slides) to post online, in which they present their standard lecture material, distilling key points from the course textbook.  Students examine these resources in tandem with the book when their schedule allows.  In-class time is then fully devoted to active learning experiences such as discussions, practice problems, and case studies.  Research has shown that such efforts can lead to improved learning outcomes for STEM students, as well as more equitable classrooms