April 2019 Limerick Project

Periodic Law

“The table we call periodic
Took Chem from a set anecdotic
To an orderly art
In which elements chart
Their behaviors and traits episodic.”

 My first poem for the April 2019 project focused on the Periodic Table of the Elements (PTE).  2019 was the International Year of the Periodic Table, marking 150 years since Dmitri Mendeleev’s publication of the first version of the modern periodic table in 1869.  The April 1 limerick highlights why the PTE is central to chemistry as a discipline. 

As discussed in the previous entry, in these brief discussions, I will attempt to provide the minimum context for a poem to make sense to a general audience, within a 280-word count (starting with the first line of the poem itself!). These brief essays are not intended to be exhaustive: any General Chemistry textbook would have far more detail, as well as more precise language. Some pertinent links are provided below to resources with more comprehensive explanations.

“The table we call periodic/ Took Chem from a set anecdotic/ To an orderly art”
Prior to the development of periodic law in the late 1800s, many chemical elements had been studied, but the data regarding these individual elements were relatively random: more anecdotal than systematic.  While different stories recount Mendeleev’s motivation differently, one common theme is that he had recently begun work as a professor, and he was interested in organizing the disciplinary information of chemistry more clearly for his students.  His version of the PTE presented information about chemical elements in a comprehensive, logical manner. (Additionally, the third line nods towards Mendeleev’s work on the visually distinctive table that adorns science classroom walls everywhere: perhaps STEM’s most universal artwork!)       

“In which elements chart/ Their behaviors and traits episodic.” 
In the modern PTE, elements are arranged by atomic number (the number of protons of an atom of each element) into a set of rows and columns.  Each row is called a period; elements in increasingly higher-number periods have increasingly higher atomic numbers and atomic weights. Each column is referred to as a group or family; within each family, elements have similar physical and chemical properties. Thus, overall, the elements’ behaviors repeat predictably, or episodically.  This repetition facilitated the construction of the PTE in the first place, and it allowed for Mendeleev’s prediction of “still-to-be-discovered” elements that would be isolated in the years past 1869, bolstering the PTE’s popularity through its predictive capability.     

The story of how the PTE was organized is compelling, involving far more than one scientist and deserving far more than 280 words. I’ll return to this topic, though, which lets me keep this initial discussion perfunctory.